Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(1*R**,2*S**,4*S**,5*S**)-Cyclohexane-1,2,4,5-tetrol

Goverdhan Mehta,* Saikat Sen and Siddharth Dev

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India

Correspondence e-mail: gm@orgchem.iisc.ernet.in

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C-C}) = 0.002 \text{ Å}$ R factor = 0.029 wR factor = 0.081Data-to-parameter ratio = 8.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $C_6H_{12}O_4$, exists in a chair form, with three of the four OH groups equatorially disposed. All four hydroxy groups participate in extensive intermolecular $O-H\cdots O$ hydrogen bonding.

Received 28 February 2005 Accepted 3 March 2005 Online 11 March 2005

Comment

The title compound, (1), is one of the five possible geometrical isomers of 1,2,4,5-cyclohexanetetrol. Compound (1) can be conveniently prepared from 1,4-cyclohexadiene *via* a selective epoxidation-hydrolysis-osmylation strategy (McCasland *et al.*, 1963) and is the only readily obtainable configurational isomer of 1,2,4,5-cyclohexanetetrol capable of existing in two energetically different conformational isomers, (1a) and (1b). While conformer (1a) has three of the four hydroxy groups equatorial and is capable of solely intermolecular $O-H\cdots O$ hydrogen bonding, conformer (1b), with two *syn*-diaxial hydroxy groups, can be stabilized through an intramolecular $O-H\cdots O$ hydrogen bond (Girling *et al.*, 1974; Panagiotopoulos *et al.*, 1974; James *et al.*, 1978).

$$HO_{HO}$$
 OH OH

Experimentally, the hydroxy groups in (1) were found to adopt the spatial disposition present in (1a) (Fig. 1). Molecules of (1) pack in a herringbone-type arrangement in the noncentrosymmetric space group $P2_12_12_1$ (Fig. 2). Each tetrol molecule is linked to six nearest neighbors by intermolecular O—H···O hydrogen bonds (Table 2). The puckering parameters (Cremer & Pople, 1975) for the cyclohexane ring $[q_2 = 0.026 (2) \text{ Å}, q_3 = -0.582 (2) \text{ Å}, \varphi_2 = -17 (4)^{\circ}, Q_T = 0.585 (2) \text{ Å}$ and $\theta_2 = 177.2 (2)^{\circ}]$ describe a slightly distorted chair conformation. The total puckering amplitude Q_T is only

Figure 1 View of (1), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2 The molecular packing of (1), viewed along the a axis. H atoms bonded to C atoms have been omitted for clarity. Dotted lines indicate hydrogen bonds.

slightly smaller than that for an ideal chair (0.63 Å). φ_2 is close to 0° , which corresponds to a boat conformation. Therefore the cyclohexane ring is distorted from an ideal chair conformation and is flattened at C6, allowing the C1–C6–C5 angle to increase to 112.86 (13)°, while the other internal ring angles remain close to the tetrahedral values. The flattening of the cyclohexane ring at C6 can be ascribed to the non-bonding (1,3-diaxial) interaction between the atom O1 and H atoms bonded to atoms C3 and C5.

Experimental

Compound (1) was prepared by a modification of the procedure described by McCasland *et al.* (1963). 1,4-Cyclohexadiene (0.5 ml, 5.3 mmol) in dichloromethane (3 ml) was treated with *m*-chloroperbenzoic acid (70% purity, 1.4 g) in dichloromethane (5 ml) at 273 K. The monoepoxide thus obtained was heated with a 0.2 *M* aqueous solution of Na₂CO₃ (5 ml) at 368 K to obtain *trans*-4-cyclohexene-1,2-diol (0.36 g) in 70% yield (Michaud & Viala, 1999). The diol (0.20 g, 1.8 mmol), upon *cis*-dihydroxylation with catalytic osmium tetroxide (0.5 mol%) and *N*-methylmorpholine-*N*-oxide (50% solution in water, 0.40 ml) in 4:1 acetone–water (0.5 ml), gave the tetrol (1) (0.21 g) in 80% yield. Suitable crystals of (1) were obtained by slow evaporation of its solution in 1:2 dry ethyl acetate–methanol.

Crystal data

Mo $K\alpha$ radiation
Cell parameters from 700
reflections
$\theta = 2.9 - 27.0^{\circ}$
$\mu = 0.12 \text{ mm}^{-1}$
T = 296 (2) K
Block, colorless
$0.40 \times 0.35 \times 0.30 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	814 independent reflections
diffractometer	800 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.016$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 8$
$T_{\min} = 0.922, T_{\max} = 0.964$	$k = -10 \rightarrow 10$
5158 measured reflections	$l = -14 \rightarrow 13$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0517P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.029$	+ 0.064P]
$wR(F^2) = 0.081$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.18	$(\Delta/\sigma)_{\text{max}} = 0.002$
814 reflections	$\Delta \rho_{\text{max}} = 0.23 \text{ e Å}^{-3}$
95 parameters	$\Delta \rho_{\min} = -0.16 \text{ e Å}^{-3}$
H-atom parameters constrained	

Table 1
Selected bond angles (°).

C1-C2-C3	111.04 (13)	C4-C5-C6	109.96 (13)
C1-C6-C5	112.86 (13)	C5-C4-C3	109.68 (12)
C4-C3-C2	111.01 (13)	C6 - C1 - C2	109.83 (12)

Table 2 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathbf{H}\cdots A$
O1-H1O···O4i	0.82	1.89	2.705 (2)	172
$O2-H2O\cdots O3^{i}$	0.82	2.01	2.765 (2)	153
O3-H3O···O1 ⁱⁱ	0.82	1.92	2.742 (2)	176
$O4-H4O\cdots O2^{iii}$	0.82	1.94	2.752 (2)	169
Symmetry codes: $-x + \frac{3}{2}$, $-y + 2$, $+z + \frac{3}{2}$		1, y, z; (ii)	$+x+\frac{1}{2},-y+\frac{3}{2},$	-z+1; (iii)

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.97–0.98 Å and $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$, and O—H distances fixed at 0.82 Å and $U_{\rm iso}({\rm H})=1.5U_{\rm eq}({\rm O})$. Though (1) is obtained in a racemic form through synthesis, its chiral structure in the solid state appears to have resulted from a spontaneous resolution during crystallization. However, owing to the absence of any heavy atom $(Z>{\rm Si})$ in (1), the absolute configuration could not be refined. Friedel pairs (539) were averaged prior to merging of data in $P2_12_12_1$; the reported value of $R_{\rm int}$ corresponds to subsequent merging of equivalent reflections in this space group.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *CAMERON* (Watkin *et*

organic papers

al., 1993); software used to prepare material for publication: *PLATON* (Spek, 2003).

We thank the DST, Government of India, for the CCD facility at IISc.

References

Altomare, A., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). *J. Appl. Cryst.* 27, 435.

Bruker (1998). SMART (Version 6.028) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Girling, R. L. & Jeffrey, G. A. (1974). Acta Cryst. B30, 327-333.

James, V. J., Stevens, J. D. & Moore, F. H. (1978). Acta Cryst. B34, 188–193.
McCasland, G. E., Furuta, S., Johnson, L. F. & Shoolery, J. N. (1963). J. Org.

Chem. 28, 894-900.

Michaud, S. & Viala, J. (1999). Tetrahedron, 55, 3019-3024.

Panagiotopoulos, N. C., Jeffrey, G. A., La Placa, S. J. & Hamilton, W. C. (1974). Acta Cryst. B30, 1421–1430.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Watkin, D. M., Pearce, L. & Prout, C. K. (1993). *CAMERON*. Chemical Crystallography Laboratory, University of Oxford, England.

0922 Mehta et al. • $C_6H_{12}O_4$